

 Edgehog

 v0.7.1

 [image: Logo]

 Table of contents

 	User Guide

 	Introduction

 	Core concepts

 	Hardware Types

 	System Models

 	Devices

 	SDKs

 Introduction - Edgehog v0.7.1

Introduction

Edgehog is an Open Source IoT platform focused on device fleet management. It conveniently handles
fundamental operations such as performing update campaigns, getting device status information,
geolocation and much more. It is based on Astarte.
This documentation provides information on daily operations for Edgehog users and integrators. It
goes through fundamental operations such as performing updates, querying APIs,
integrating 3rd party applications, etc.

 Core concepts - Edgehog v0.7.1

Core concepts

This page will illustrate some of the core concepts used in Edgehog.
Hardware types, Devices and System Models
This section will deal with the difference between three main concepts used throughout Edgehog:
Hardware Types, Devices and System Models.
To better illustrate this, we will use as example the ACME Inc company, which manages a fleet of
e-bikes and electric scooters. We will illustrate the hierarchy going from the bottom up, showing
how each concept relates to the other ones.
Hardware Type
An Hardware Type represents the electronic hardware components embedded in an device. As an example,
a possible Hardware Type description could be "ESP32 with a GSM module" or "RaspberryPi 0 with an
LTE modem".
Each Hardware Type can have one or more Hardware Type Part Numbers associated with it. This makes
sure that the user is able to map, e.g., a new revision of the PCB to the same Hardware Type, since
different hardware with the same Hardware Type is assumed to be compatible. Usually (but not
necessarily) the Hardware Type Part Number is a code that is written on the PCB.
Device
A device is an entity connected to Astarte. A Device has a uniquely identified by its Device ID, and
it usually lives inside a product such as an e-bike (if it is not on a shelf or in a repair shop).
System Model
A System Model constitutes a group of devices implementing the same functionality for some users.
For example, two e-bikes can be physically identical and still belong to different System Models,
since they can have different software running on them.
A System Model is associated with a specific Hardware Type, so two devices implementing the same
functionality but using different Hardware Types will belong to two different System Models. This
makes it so that the System Model is the fundamental identifier when it comes to software updates.
A System Model has one or more System Model Part Numbers asociated with it, allowing to track newer
versions of a product which do not change its main functionality. Usually (but not necessarily) the
System Model's Part Number is delivered along with the device, or on the box containing it.
Drawing again from our bike sharing example, e-bikes and electric scooters would have two different
System Models, even if they use the same Hardware Type (e.g. an ESP32 with a GSM module). It is also
possible that the e-bikes are further split into different System Models depending on the country
they are deployed in if, for example, the software has to conform to speed limitations which are
specific for each country.
Tags, attributes and groups
This section will deal with various types of properties that can be added to devices to identify
and group them.
Tags
Tags are string values that can be freely attached to Devices. There is no predefined semantics so
users are free to use them as they see fit.
Some examples of tags that can be assigned to the e-bikes or electric scooters in our examples
could be out-of-order, test_machine or Upgraded Brakes.
Attributes*
*This feature is planned for a future release
Attributes are namespaced key-value pairs that can be attached to Devices. The namespacing happens
by prepending the namespace to the key using a colon as separator (i.e. namespace:key). This
ensures that the same key in different namespaces can be addressed unambiguously.
The attribute keys are always strings, while values support all the types supported by Astarte
Interfaces.
The majority of attributes are automatically populated using different mechanisms depending on the
namespaces, but there's also the possibility of manually defining custom attributes for a specific
device.
The supported namespaces are:
	edgehog-synthetic: automatically populated with values coming from Device data that is derived
from Edgehog (e.g. Geolocation, System Model, Hardware Type, etc...)
	edgehog-policy: automatically populated with Edgehog values which are imposed on the cloud side
(e.g. Geolocation disabled due to GDPR restrictions).
	astarte-values: automatically populated with values coming from device-owned Astarte interfaces
using an Attribute Value Source with type astarte-value.
	astarte-attributes: automatically populated using the attributes map in the Device status
returned from Astarte AppEngine API. Since Astarte attributes don't provide a trigger mechanism,
these attributes are lazily populated and should be considered eventually consistent.
	custom: user-defined key-value pairs which are manually assigned to a Device.

Note that all values will be converted to a string when using them as attribute values
Attribute Value Source*
*This feature is planned for a future release
An Attribute Value Source populates the attributes of a Device according to some rule.
Currently, the only supported type of Attribute Value Source is astarte-value, which updates
Device attributes using a value from an Astarte interface.
Selector
A Selector allows selecting a subset of Devices based on their tags and attributes. The Selector
can be evaluated for a Device and return true if the Device matches the Selector and false
otherwise.
Each Selector can be made of one or more filters, combined using and and or and (possibly)
parenthesized. When no parenthesis are present, and has a higher priority than or in
expressions.
Supported filters
Tag filter
Created with the syntax "<value>" in tags, it returns true if value is included in the Device
tags. It's also possible to use a negative filter with "value" not in tags, in this case the
filter will match all Devices which don't have the tag.
Attribute filter*
*Note that while Attribute filters are already supported, Attributes are going to be available in a
future release
Created with the syntax attributes["<namespace>:<key>"] <operator> <value>, it returns true if
the value of the chosen attribute satisfies the expression.
The supported operators are:
	== and != for all value types
	>, >=, <, <= for numeric or datetime values

<value> can be a boolean (true or false), a string, a number (either integer or float), or one
of the values supported using special syntax:
	now() indicates the current datetime at the time the Selector is evaluated. This can be used to
do comparisons with other datetime attributes.
	datetime("<ISO8601 string>") is used to pass datetime values in expressions. The string
contained in double quotes must be a valid UTC ISO8601 timestamp. Example:
datetime("2022-06-27T16:27:40.254795Z").
	binaryblob("<base64 encoded value>") is used to pass binaryblob values in expressions. The
string contained in double quotes must be a valid Base64 encoding of the binary value. Example:
binaryblob("Zm9vYmFy") to encode the string "foobar".

Attribute inclusion filter*
*This feature is planned for a future release
	"<value>" in attributes["<namespace>:<key>"]: returns true if value is included in the
chosen attribute. Note that the attribute must be an array for the expression to be valid.

Examples
To provide some examples, here is a Selector to target all out of order Devices in Milan:
"out-of-order" in tags and attributes["edgehog-synthetic:city"] == "Milan"
Here is a selector to target all Devices that have their service timestamp in the past so they have
to be serviced, imagining this information is contained in the com.foo.ServiceInfo Astarte
interface in the /serviceTimestamp:
attributes["astarte-values:com.foo.ServiceInfo/serviceTimestamp"] <= now()
Caveats
Note that numeric values are conflated in a single numeric type, i.e. a selector with
attributes["custom:foo"] == 42 will match either if foo is integer, longinteger or double
(e.g it will also match 42.0).
Another important thing to notice is that using an Attribute Filter will implicitly match only
Devices that have that attribute. As an example, if there are 3 devices, one with attribute foo:bar == 42, the other with attribute foo:bar == 3 and the third one with no foo:bar attribute, the
Attribute Filter attributes["foo:bar"] != 42 will match the second Device but not the third one,
since it doesn't have the target attribute.
In the future, additional syntax could be added to Selectors to allow filtering based just on the
presence or absence of an attribute.
Group
A Group represents a subset of devices filtered by a Selector.
The Group can be used to perform operations on Devices contained in it.
Since Tags and Attributes of a Device can change, Groups do not statically define the set of Devices
they contain but they change dynamically following Device changes.
Note that a Device can't be manually assigned to a Group, its tags and attributes must be
used to make it satisfy the group Selector.

 Hardware Types - Edgehog v0.7.1

Hardware Types

For each hardware type the following information can be displayed and edited.
	Name: a user friendly name, such as "Strawberry Pi 5"
	Handle: a machine friendly identifier, such as "strawberry-pi-5" (it must be a lower case, alpha
numeric string, with no spaces and dashes allowed in the middle)
	Part Numbers: a list of part numbers, such as "STBEPI-5-MA-2GB-REV1","STBEPI-5-MB-8GB-REV1",
"STBEPI-5-MB-8GB-REV2", etc... Multiple part numbers can be entered using the "Add Part Number"
button.

[image: Hardware Types Screenshot]
Create Hardware Type
This page allows creating a new hardware type, once created it can be edited at a later time.
[image: Create Hardware Type Screenshot]
Update Hardware Type
By clicking the link on the hardware type list it is possible to open the detailed Hardware Type
page. It is possible to edit the existing hardware type and to update it clicking the "Update"
button.

 System Models - Edgehog v0.7.1

System Models

As already mentioned in the Core concepts, System Model represent a group of
devices providing the same functionalities to users.
In Edgehog a System Model has this information associated with it:
	Name: a user friendly name used to identify the System Model (e.g. "E-Bike v2")
	Handle: a machine friendly identifier for the System Model (e.g. "e-bike-v2"). A valid handle must
begin with a lowercase letter followed by any number of lower case letters, numbers or dashes
(-).
	Hardware type: the Hardware Type that is used for this system model.
Each System Model is associated with exactly one Hardware Type.
	Part numbers: the Part Numbers for this System Model. Each System Model can have one or more Part
Numbers associated with it, and Devices will be associated with a System Model based on the Part
Number they declare to implement.
	Picture: each System Model can have a picture associated with it, so that Devices using that
System Model can be identified at a glance.

The following sections will illustrate all the pages that can be used to list, create and edit
System Models.
System Model List
[image: System Model List Screenshot]
In the system model list you can see all the System Models that are available. All information
relative to each System Model (minus the picture) is present in the table, and clicking on the name
brings to the System Model page.
Clicking on the "Create System Model" button in the top right brings to
Create System Model page.
System Model
[image: System Model Page Screenshot]
The System Model page shows the information about a specific System Model and allows updating all of
them except the Hardware Type.
Editing any field and then pressing the "Update" button saves the new values for the System Model.
The "Add Part Number" button allows adding additional Part Numbers to a System Model, and the thrash
icon on the right of each of them allows deleting them.
Create System Model
[image: Create System Model Screenshot]
The Create System Model page allows creating a new System Model.
The System Model information can be provided using the form, and pressing the "Update" button saves
the System Model. The Hardware Type must be chosen from a list of available Hardware Types using the
dropdown menu. The "Add Part Number" button allows adding additional Part Numbers for the System
Model.

 Devices - Edgehog v0.7.1

Devices

As mentioned in the core concepts, a Device is an entity connected to Astarte.
In the device list you can see all the Devices that are available.
[image: Devices Screenshot]
For each Device the following information can be displayed:
	Name: a user friendly name
	Device ID: the ID that uniquely identifies the device connecting to Astarte
	System Model: the System Model associated to the Device
	Hardware Type: the Hardware Type associated to the Device's System Model
	Status: Reports the connection status, indicating whether the Device is connected to Astarte
	Last Seen: Reports the time of the last connection activity of the Device

Clicking on a Device's name brings to a page dedicated to that Device to display additional info.
Adding a Device
Each Device will become visible in Edgehog automatically the first time it connects to Astarte.
Indeed, Astarte informs Edgehog about the Device's presence and activity via Astarte Triggers, which
should be configured to relay the appropriate events.
Associating a Device to a System Model
Each Device is associated to a specific System Model. The System Model is the fundamental identifier
when it comes to software updates, since it dictates which software is supported and what
functionalities should be configured.
However, during its lifetime, a Device can be tied to different System Models. Say, for example,
that two different models of e-bikes are sent to maintenance; if they share the same hardware, the
working PCB board of one model could be fitted into the other one.
For this reason, each time a Device connects to Astarte, it can notify Astarte about the System
Model it refers to, exposing its Part Number. Astarte then informs Edgehog via Astarte Triggers, so
that Edgehog can associate the Device to the correct System Model by matching the Device's Part
Number with the ones of the System Model.
Tags and Attributes
A Device can have some Tags and Attributes
associated with it.
Tags are purely user-defined and can be added and removed from the Device page.
Attributes are mostly automatically populated but the custom namespace attributes can be assigned
freely from the Device page.
Tags and attributes can be used to determine the membership of a Device to a specific
group, which in turn can be used to assign a Device to a specific Update Channel when
receiving OTA Updates.
Device info
On the page of each Device different sets of data are shown. On top of the basic info already
visible in the device list, additional sections can be displayed here to report operational data
exposed by the device.
The details about how devices publish such data are explained in
Interacting with Edgehog.
Hardware info
This section reports an overview on the general hardware capabilities of the Device.
[image: Device Hardware Info Screenshot]
Operating System
This section reports an overview of the operating system of the Device.
[image: Device Operating System Screenshot]
Runtime
This section reports an overview about the Edgehog runtime running on the Device.
[image: Device Runtime Screenshot]
Base Image
This section reports an overview of the Base Image of the Device.
[image: Device Base Image Screenshot]
System status
This section reports an overview on the current system status of the Device.
[image: Device System Status Screenshot]
Storage Status
This section reports an overview on the capacity and usage of the storage units of the Device.
[image: Device Storage Screenshot]
Battery status
This section reports an overview on the current status of the battery slots of the Device.
[image: Device Battery Screenshot]
Cellular Connection
This section reports an overview of the cellular connection of the Device.
[image: Device Cellular Connection Screenshot]
Network Interfaces
This section reports the list of network interfaces of the Device.
[image: Device Network Interfaces Screenshot]
Nearby WiFi APs
This section reports the list of nearby Access Points that the Device found while scanning for WiFi
signals.
[image: Device WiFi APs Screenshot]
Geolocation
This section reports the approximate location of the Device, using Edgehog's geolocation modules to
estimate a set of GPS coordinates.
[image: Device Geolocation Screenshot]
Depending on the data exposed by the Device, the coordinates can be estimated from:
	the GPS position published via the Astarte interface
io.edgehog.devicemanager.Geolocation.
	nearby WiFi APs that the Device detected recently, published via the Astarte interface
io.edgehog.devicemanager.WiFiScanResults
	the IP address used by the Device to connect to Astarte

Based on the available data, Edgehog's geolocation modules try to find to best estimate by relying
on the most up-to-date info and using the ones that provide the most accuracy.

 SDKs

 Attribute Value Sources - Edgehog v0.7.1

Attribute Value Sources

Device attributes can be populated using external sources using Attribute Value Sources. These
provide mechanisms to automatically update some device attributes according to some rules.
All the concepts used below are detailed in the Core
Concepts page, this guide is oriented towards
operational details to use Attribute Value Sources.
Populating attributes using Astarte values
To populate an attribute using a value coming from an Astarte interface, an Attribute Value Source
of type astarte-value must be added. This will populate an attribute whose value will be
eventually consistent with the value of the target Astarte interface and path.
When creating an astarte-value Attribute Value Source, the following information must be provided:
	Interface: the target interface to be used
	Major version: the target major version of the interface
	Path: the target path containing the value that will be used as attribute value

After its creation, the Attribute Value Source will install an Astarte trigger, so when the target
interface value changes, the change will be (eventually) reflected in the Attribute value. The
Attribute key will be astarte-value:<interface-name><path>. The value will also be initialized
asynchronously for all devices by querying AppEngine API in a background task.

 Groups - Edgehog v0.7.1

Groups

Edgehog allows creating groups of Devices based on tags and attributes. This makes it easy to target
them with fleet operations.
All the concepts used below are detailed in the Core
Concepts page, this guide is oriented towards
operational details to create a group.
Creating a group
A new group can be created from the Groups section of Edgehog.
When creating a group, the following information must be provided:
	Name: the display name of the group
	Handle: an handle matching the ^[a-z][a-z\d\-]*$ regular expression.
	Selector: a Selector that will determine which Devices belong to
this group (i.e. all Devices that match the Selector)

Deleting a group
To delete a group, just press the Delete icon next to it in the group list.
Note that deleting a group means that all automatic operations based on that group (e.g. Update
Channel auto-assignment) will cease to work.

 Batch Operations* - Edgehog v0.7.1

Batch Operations*

*This feature is planned for a future release
Edgehog provides facilities to perform batch operations on groups of devices. These are used to
avoid having to perform repetitive tasks on many devices.
This guide presents the batch operations which can be performed using Edgehog.
Maintenance Window Setting
Using the Edgehog API or its frontend, it is possible to set the same Maintenance
Window to all devices belonging to a Group.
When performing the operation, the following information must be provided
	Maintenance Window Start: the UTC timestamp that marks the beginning of the Maintenance Window
	Maintenance Window End: the UTC timestamp that marks the end of the Maintenance Window
	Group: the name of the target group

All devices belonging to the Group when the operation is started will be assigned the new
Maintenance Window. Note that the Maintenance Window remains a property of the single device and the
assignment is performed one-shot when the operation is performed (i.e. Devices that become member of
the group later are not affected by it).

 OTA Update concepts - Edgehog v0.7.1

OTA Update concepts

This page will illustrate some of the OTA Update concepts used in Edgehog.
Base Image
A Base Image is an image created to be run on a Device. The exact content of the Base Image can vary
depending on the use case, but it usually contains the operating system image or the device
firmware. Each Base Image belongs to a Base Image Collection.
Base Images follow semantic versioning, so that the user is able to know when a specific update can
contain breaking changes. Each Base Image must have a unique version number.
Base Image Collection
A Base Image Collection is a set of Base Images associated with a specific System
Model and, implicitly via the System Model, with a specific Hardware
Type. The mapping relation between Base Image Collection and System Models is 1:1,
so a Base Image Collection is associated with a single System Model and viceversa.
A Base Image Collection contains all the Base Images that ran, are running or could be run on a
System Model. Drawing from the bike sharing example, there would be a different Base Image
Collection for, e.g., e-bikes from each specific country to handle the different speed limitations.
The primary purpose of a Base Image Collection is to limit what can be installed to a System Model,
preventing unintended installations, such as electric scooter firmware on an e-bike.
Version Requirement
A Version Requirement specifies compatibility between versions. It is expressed as a string containing
various criteria and adheres to syntax detailed in
Elixir's Version.Requirement.
For example, when the Version Requirement >= 2.0.0 and < 3.0.0 is used to define the
Supported starting versions of Base Image foo, it identifies a subset of Base Images
within the same Base Image Collection that can be updated to the Base Image foo.
Update Channel
An Update Channel represents the subscription of a Device to a specific set of Base Images.
To assign a Device to a specific Update Channel (other than the default one) the device must
belong to a Group and that Group has to be assigned to the Target Groups of the Update
Channel.
The same Base Image can be associated with multiple Update Channels. This guarantees
that once testers in the beta Update Channel validate the Base Image, the exact same Base Image
will be used to update devices in the default Update Channel.
Update Campaign
An Update Campaign is the operation that tracks the distribution of a specific Base Image to all
devices belonging to an Update Channel.
An Update Campaign can define additional constraints about which devices can be updated (e.g.
minimum current version, force downgrade, etc).
Rollout Mechanism
The Rollout Mechanism determines the details of how an Update Campaign is carried out.
It is responsible of deciding if the update is pushed towards the devices or pulled by users
interacting with them.
It also defines other details like how many devices are updated at a time, how many errors should be
supported before aborting the campaign etc.
There are currently two main Mechanisms available: Push and Optional*. The Push mechanism pushes the
update towards the device unconditionally, while the Optional mechanism waits for a confirmation on
the Device side (usually given by a user) before starting to download the update.
*The Optional rollout mechanism is planned for a future release
OTA Operation
An OTA Operation tracks the progress of an update to a specific Device. It is started when Edgehog
starts pushing the update to the Device and ends either with a success or with an error (possibly
due to a timeout).
Update Target
An Update Target is the target of an Update Campaign, which is composed by the targeted device,
the status of the target in the linked Update Campaign, OTA Operation and additional metadata.
Maintenance Window*
*This feature is planned for a future release
Each Device can have an optional Maintenance Window. This is used by Update Campaign to determine
which Devices can be updated at a specific time.
If a Device declares a Maintenance Window, the updates targeting it will start only in the interval
defined by it. Note that there's no guarantee that the update will also terminate inside the
Maintenance Window.

 Base Images - Edgehog v0.7.1

Base Images

As mentioned in the OTA Update concepts, Base Image is an image created
to be run on a Device. The exact content of the Base Image can vary depending on the use case,
but it usually contains the operating system image or the device firmware. Each Base Image belongs to
a Base Image Collection.
Base Images follow semantic versioning, so that the user is able to know when a specific update can
contain breaking changes. Each Base Image must have a unique version number.
In Edgehog a Base Image has this information associated with it:
	Base Image Collection: the Base Image Collection that is associated with this Base Image.
	Base Image URL: link to a file with the Base Image content.
	Version: a version number following the Semantic Versioning spec. The
version number must be unique.
	Supported starting versions (optional): a Version Requirement
that the Device must satisfy with its current Base Image to be updated with this Base Image.
If a Device that does not satisfy the requirement is included in an Update Campaign
that uses this Base Image, the result of the OTA Operation is an error.
	Release Display Name (optional): a localized user-friendly name for the release.
	Description (optional): a localized description of the content of the Base Image.

The following sections will illustrate all the pages that can be used to list, create, edit and delete
Base Images.
Base Image List
[image: Base Image List Screenshot]
The Base Image Collection page shows table with associated Base Images.
Clicking on the Base Image Version brings to the Base Image page.
Clicking on the "Create Base Image" button in the right brings to the Create Base Image page.
Base Image
[image: Base Image Page Screenshot]
The Base Image page shows the information about a specific Base Image and allows updating some of them.
Editing any field and then pressing the "Update" button saves the new values for the Base Image.
The "Delete" button allows to delete the Base Image.
Create Base Image
[image: Create Base Image Screenshot]
The Create Base Image page allows creating a new Base Image.
The Base Image information can be provided using the form, and pressing the "Create" button saves the Base Image.
Some information can be automatically filled in if the Base Image can be parsed by one of the
supported Base Image parsers. Other than that, users are free to
use whatever format they choose for the artifact that will be pushed towards the device, provided
the Device is able to handle it.
When you upload add Base Image in a Base Image Collection, no update is pushed towards devices,
the Base Image is just uploaded in Edgehog's storage. To start pushing updates towards devices, an
Update Campaign must be created.
Supported Base Image parsers
Base Image parsers are not implemented yet. As soon as they are implemented, this section will be
populated with the supported formats.

 Base Image Collections - Edgehog v0.7.1

Base Image Collections

As mentioned in the OTA Update concepts, Base Image Collection represent
a set of Base Images associated with a specific System Model and,
implicitly via the System Model, with a specific Hardware Type.
The mapping relation between Base Image Collection and System Models is 1:1, so a Base Image Collection
is associated with a single System Model and viceversa.
A Base Image Collection contains all the Base Images that ran, are running or could be run on a
System Model. Drawing from the bike sharing example, there would be a different Base Image
Collection for, e.g., e-bikes from each specific country to handle the different speed limitations.
The primary purpose of a Base Image Collection is to limit what can be installed to a System Model,
preventing unintended installations, such as electric scooter firmware on an e-bike.
In Edgehog a Base Image Collection has this information associated with it:
	Name: a user friendly name used to identify the Base Image Collection (e.g. "E-Scooter OS")
	Handle: a machine friendly identifier for the Base Image Collection (e.g. "e-scooter-os"). A valid handle
must begin with a lowercase letter followed by any number of lower case letters, numbers or dashes (-).
	System Model: the System Model that is associated with this Base Image Collection.
	Base Images: a set of Base Images associated with this Base Image Collection.

The following sections will illustrate all the pages that can be used to list, create, edit and delete
Base Image Collections.
Base Image Collection List
[image: Base Image Collection List Screenshot]
In the base image collection list you can see the table with all Base Image Collections that are available.
Clicking on the name brings to the Base Image Collection page.
Clicking on the "Create Base Image Collection" button in the top right brings to
Create Base Image Collection page.
Base Image Collection
[image: Base Image Collection Page Screenshot]
The Base Image Collection page shows the information about a specific Base Image Collection and Base Images
associated with it in table below.
Editing any field and then pressing the "Update" button saves the new values for the Base Image Collection.
The "Create Base Image" button allows adding additional Base Images to the Base Image Collection.
Clicking on the Base Image Version brings to the Base Image page.
The "Delete" button allows to delete the Base Image Collection.
Create Base Image Collection
[image: Create Base Image Collection Screenshot]
The Create Base Image Collection page allows creating a new Base Image Collection.
The Base Image Collection information can be provided using the form, and pressing the "Create" button saves
the Base Image Collection. The System Model must be chosen from a list of available System Models using the
dropdown menu.

 Update Channels - Edgehog v0.7.1

Update Channels

As mentioned in the OTA Update concepts, Update Channel represents the subscription
of a Device to a specific set of Base Images.
To assign a Device to a specific Update Channel the device must belong to a Group
and that Group has to be assigned to the Target Groups of the Update Channel.
The same Base Image can be associated with multiple Update Channels. This guarantees
that once testers in the beta Update Channel validate the Base Image, the exact same Base Image
will be used to update devices in the default Update Channel.
In Edgehog an Update Channels has this information associated with it:
	Name: a user friendly name used to identify the Update Channel (e.g. "Beta").
	Handle: a machine friendly identifier for the Update Channels (e.g. "beta"). A valid handle
must begin with a lowercase letter followed by any number of lower case letters, numbers or dashes (-).
	Target Groups: a list of groups containing Devices which will
automatically get assigned to this Update Channel.

A group can be associated only with a single Update Channel. To change the auto-assignment of a
specific group from an Update Channel to another, the group must be removed from the previous Update
Channel and then added to the new one.
The following sections will illustrate all the pages that can be used to list, create, edit and delete
Update Channels.
Update Channel List
[image: Update Channel List Screenshot]
In the Update Channel list you can see the table with all Update Channels that are available.
Clicking on the name brings to the Update Channel page.
Clicking on the "Create Update Channel" button in the top right brings to
Create Update Channel page.
Update Channel
[image: Update Channel Page Screenshot]
The Update Channel page shows and allows updating the information about a specific Update Channel.
Editing any field and then pressing the "Update" button saves the new values for the Update Channel.
The "Delete" button allows to delete the Update Channel.
Create Update Channel
[image: Create Update Channel Screenshot]
The Create Update Channel page allows creating a new Update Channel.
The Update Channel information can be provided using the form, and pressing the "Create" button saves
the Update Channel. Target Group(s) must be chosen from a list of available Groups using the dropdown menu.

 Update Campaigns - Edgehog v0.7.1

Update Campaigns

As mentioned in the OTA Update concepts, Update Campaign is the operation
that tracks the distribution of a specific Base Image to all devices
belonging to an Update Channel.
Note that an Update Campaign can only send updates for the same
Base Image Collection, and special operations
(like converting a Device from a one System Model to another) must always be done with a Manual OTA
Update.
The following sections will illustrate all the pages that can be used to list, create and view Update Campaigns.
Update Campaign List
[image: Update Campaign List Screenshot]
In the Update Campaign list you can see the table with all Update Campaigns. Clicking on the name brings
to the Update Campaign page.
Clicking on the "Create Update Campaign" button in the top right brings to
Create Update Campaign page.
Create Update Campaign
[image: Create Update Campaign Screenshot]
The Create Update Campaign page allows creating a new Update Campaign.
When creating an Update Campaign, the following information must be provided
	Base Image: the target Base Image for the Update Campaign.
	Update Channel: the target Update Channel for the Update Campaign.
	Roll-out Mechanism properties.

The Update Campaign information can be provided using the form, and pressing the "Create" button saves
the Update Campaign.
Once created, the Update Campaign will start rolling out updates towards the devices, and its
progress can be checked from the Edgehog Dashboard or through Edgehog GraphQL API.
Note that the campaign will "snapshot" the Devices belonging to the Update Channel when it's
started, and will target only those. If additional Devices are added to the Update Channel (either
manually or automatically via auto-assignment) after the Update Campaign is created, they won't
receive the Base Image and will require a separate campaign to be started.
Only a single Update Campaign can be started for a given System Model and Update Channel
combination, so creating a new Update Campaign while another one is already running will implicitly
cancel* the old one. This means that Devices that didn't yet receive the Base Image of the old Update
Campaign will directly receive the new one, without any intermediate step.
*Implicit Cancellation feature is planned for a future release
Roll-out mechanism
Here are the currently supported Roll-out Mechanisms and their properties
push
This Roll-out mechanism pushes the update towards the device unconditionally. This can be used to
provide automatic updates where the user should not have the choice of refusing the update.
The properties of this Roll-out Mechanism are:
	Max Pending Operations: the maximum number of pending OTA Operations.
The Update Campaign will have at most this number of OTA Operations that are started
but not yet finished (either successfully or not).
	Max Failures: the maximum percentage of failures allowed over the number of total targets. If the failures
exceed this threshold, the Update Campaign terminates with a failure.
	Request Retries: the number of times an update must be retried on a specific Device before considering it
a failure. Note that the update is retried only if the OTA Request doesn't get acknowledged from the device.
	Request Timeout: the timeout (in seconds) to wait before considering an OTA Request lost (and possibly retry).
	Force Downgrade (optional): when checked forces downgrading a Device which is currently using a later version
of the Base Image.

optional*
*The Optional rollout mechanism is planned for a future release
This Roll-out mechanism just pushes a message towards the Device informing that an update is
available. The update is downloaded to the device only after the user accepts the update. The update
is not required to be pushed immediately, to provide a backpressure mechanism if many users accept
the update at the same time.
Update Campaign
[image: Update Campaign Page Screenshot]
The Update Campaign page shows the information about a specific Update Campaign and Devices associated
with it in table below.
Clicking on the Base Image Collection, Base Image, Update Channel or Device name bring to the corresponding page.

 OTA Updates - Edgehog v0.7.1

OTA Updates

Edgehog provides an OTA update mechanism that allows remotely updating devices. The OTA update
mechanism is not tied to a specific platform and can be used on any Edgehog
runtime which implements the
io.edgehog.devicemanager.OTARequest,
io.edgehog.devicemanager.OTAEvent
and
io.edgehog.devicemanager.BaseImage
interfaces.
OTA Update concepts are detailed in the dedicated page, this guide
demonstrates the usage of an OTA update mechanism.
Managed OTA Updates
Edgehog provides a mechanism to roll-out OTA updates to devices automatically, based on their System
Model and their membership to specific Groups.
To push updates towards Devices, an Update Campaign must be created. It's important to note that an Update
Campaign can only send updates for the same Base Image Collection. Special operations, such as
converting a Device from one System Model to another, must always be done with a Manual OTA
Update.
Once created, the Update Campaign will start rolling out updates towards the devices, and its
progress can be checked from the Edgehog Dashboard or through Edgehog GraphQL API.
Note that the campaign will "snapshot" the Devices belonging to the Update Channel when it's
started, and will target only those.
Once started, the Update Campaign waits for device to come online, at which point it initiates the OTA Update.
Roll-out mechanim properties can affect this process.
For example, Max Pending Operations setting may postpone some OTA Operations.
Before actual push to the Device corresponding Update Target
is verified for fulfillment of Base Image and Roll-out mechanism criteria. For example:
	Devices having same Base Image version will be silently marked as successful.
	Devices with Base Images that don't meet Version Requirement
of distributed Base Image will be marked as failed, unless the Force Downgrade option
of Push Roll-out mechanism is enabled.

Manual OTA Updates
As an escape hatch, it's always possible to manually update a Device
from its page on the Edgehog dashboard (or using the Edgehog GraphQL API).
Note that Manual OTA Updates do not perform any check on the System Model,
so they can effectively be used to change the System Model of a Device. This also means that the user
must exercise particular attention to avoid bricking a Device, if the Device does not implement the necessary
safety checks.
[image: Manual OTA Update Screenshot]

 Architecture overview - Edgehog v0.7.1

Architecture overview

This is an overview of Edgehog's architecture.
[image: Edgehog Architecture]
The following sections will detail the interactions between Edgehog and the other components
represented in the architecture diagram.
User interaction
Edgehog exposes two ways to interact with it: a frontend that can be used by users and a GraphQL
API which can be used by third party applications to programmatically perform all actions that can
be performed in the frontend. As a matter of fact, the frontend itself uses the GraphQL API to
perform its tasks.
Database interaction
Edgehog uses PostgreSQL to store its data. The database schema supports multiple tenants which are
isolated at the database level. This makes it possible to use a single Edgehog instance with
multiple tenants (e.g. in a SaaS scenario).
Device interaction (through Astarte)
To interact with the other side of the domain (i.e. devices), Edgehog is built upon
Astarte and it exchanges data with it using two of
its mechanisms: its REST API and Astarte
Triggers. Each Edgehog tenant is mapped
to an Astarte Realm, and it owns the credentials to interact with all the Realm APIs for that
specific Realm.
Edgehog Astarte Interfaces
The interaction between Edgehog and Astarte is defined by a set of
interfaces that define which
data is sent both from Edgehog to the Devices and from the Devices towards Edgehog. Additionally,
connection and disconnection triggers ar installed in the Astarte Realm, and point to the triggers
endpoint of the Edgehog tenant.
Astarte AppEngine API
The REST API is called every time Edgehog needs to retrieve data contained in
an Astarte interface or when it needs to send data to the Devices. In the first case, Edgehog issues
a GET HTTP request to retrieve the data from AppEngine API, which reads the data from the Astarte
database. When Edgehog needs to send data towards a Device instead, it sends a POST HTTP to
AppEngine API, which takes care of delivering data via MQTT to the device.
Astarte Triggers
Astarte Triggers are used to update the online state of the device. Each time a Device connects or
disconnects from Astarte, Astarte Trigger Engine sends an HTTP POST request to the Edgehog
backend, which in turn updates the Device online status in its own database.

 Deploying with Kubernetes - Edgehog v0.7.1

Deploying with Kubernetes

Edgehog was designed as a Kubernetes native application, this guide will show how to deploy an
Edgehog instance in a Kubernetes cluster.
Note: currently Edgehog requires some manual initialization operations to be performed in the
Elixir interactive shell and is not completely automated. All required operations are detailed
below in the guide.
Requirements
	A Kubernetes cluster
	kubectl correctly configured to target the aforementioned cluster
	An Ingress Controller deployed in the cluster (the guide contains examples for the NGINX Ingress
Controller)
	An Astarte instance, with an existing realm and its private key
	A PostgreSQL database
	S3-compatible storage with its credentials
	The jq utility installed in the system
	(Optional) A Google Geolocation API Key
	(Optional) A Google Geocoding API Key
	(Optional) An ipbase.com API Key

The guide does not cover in detail how Edgehog is exposed to the internet, since administrators are
free to use their favorite Ingress Controller to achieve that. An example Ingress using the NGINX
Ingress Controller is provided, but advanced operations (e.g. certificate management) are out of the
scope of this guide.
The guide assumes everything is deployed to the edgehog namespace in the Kubernetes cluster, but
Edgehog can be deployed in any namespace adjusting the yaml files and the commands accordingly.
All fields that have to be customized will be indicated <WITH-THIS-SYNTAX>.
Deploying Edgehog
This part of the guide will detail all the operations to deploy Edgehog into an existing Kubernetes
cluster.
Namespace
First of all, the edgehog namespace has to be created
$ kubectl create namespace edgehog

Installing NGINX Ingress Controller and cert-manager (example)
At this point you should install an Ingress Controller in your cluster. As an example, we will show
the procedure to install the NGINX Ingress Controller and cert-manager (to manager SSL certificates)
using helm. To do so, use these commands
$ helm repo add jetstack https://charts.jetstack.io
$ helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx
$ helm repo update
$ helm install cert-manager jetstack/cert-manager \
 --create-namespace --namespace cert-manager --set installCRDs=true
$ helm upgrade --install ingress-nginx ingress-nginx/ingress-nginx \
 --create-namespace --namespace ingress-nginx

After some minutes, you can retrieve the Load Balancer IP with
$ kubectl get svc -n ingress-nginx

in the EXTERNAL-IP column.
Note that NGINX is only one of the possible Ingress Controllers, instructions for other Ingress
Controllers are outside the scope of this guide.
Creating DNS entries
Once you have the Load Balancer IP (obtained in the previous
step), head to your DNS provider and
point two domains (one for the backend and one for the frontend) to that IP address.
Save the two hosts (e.g. api.edgehog.example.com and edgehog.example.com) since they're going to
be needed for the following steps.
Secrets
A series of secrets containing various credentials have to be created.
Database connection
This command creates the secret containing the details for the database connection:
$ kubectl create secret generic -n edgehog edgehog-db-connection \
 --from-literal="database=<DATABASE-NAME>" \
 --from-literal="username=<DATABASE-USER>" \
 --from-literal="password=<DATABASE-PASSWORD>"

Values to be replaced
	DATABASE-NAME: the name of the PostgreSQL database.
	DATABASE-USER: the username to access the database.
	DATABASE-PASSWORD: the password to access the database.

Secret key base
This command creates the secret key base used by Phoenix:
$ kubectl create secret generic -n edgehog edgehog-secret-key-base \
 --from-literal="secret-key-base=$(openssl rand -base64 48)"

S3 Credentials (Google Cloud)
To create an S3-compatbile bucket on Google Cloud to be used with Edgehog, the following steps have
to be performed:
	Create a service
account in your
project.

	Create JSON
credentials for
the service account and rewrite them as a single line JSON:

$ gcloud iam service-accounts keys create service_account_credentials.json \
 --iam-account=<SERVICE-ACCOUNT-EMAIL>
$ cat service_account_credentials.json | jq -c > s3_credentials.json

	Create a Cloud Storage Bucket on GCP
	Choose a multiregion in the preferred zones (e.g. Europe)
	Remove public access prevention
	Choose a fine-grained Access Control, instead of a uniform one

	After making sure of having the right project selected for the gcloud CLI, assign the
objectAdmin permission to the service account for the newly created bucket:

$ gsutil iam ch serviceAccount:<SERVICE-ACCOUNT-EMAIL>:objectAdmin gs://<BUCKET-NAME>

	Create a secret containing the service account credentials

$ kubectl create secret generic -n edgehog edgehog-s3-credentials \
 --from-file="gcp-credentials=s3_credentials.json"

Values to be replaced
	SERVICE-ACCOUNT-EMAIL: the email associated with the service account.
	BUCKET-NAME: the bucket name for the S3 storage.

S3 Credentials (Generic)
Consult the documentation of your cloud provider for more details about obtaining an access key ID
and a secret access key for your S3-compatible storage.
This command creates the secret containing the S3 credentials:
$ kubectl create secret generic -n edgehog edgehog-s3-credentials \
 --from-literal="access-key-id=<ACCESS-KEY-ID>" \
 --from-literal="secret-access-key=<SECRET-ACCESS-KEY>"

Values to be replaced
	ACCESS-KEY-ID: the access key ID for your S3 storage.
	SECRET-ACCESS-KEY: the secret access key for your S3 storage.

Google Geolocation API Key (optional)
Activate the Geolocation API for your project in GCP and
create an API key to be
used with Google Geolocation.
After that, create the secret containing the API key with:
$ kubectl create secret generic -n edgehog edgehog-google-geolocation-credentials \
 --from-literal="api-key=<API-KEY>" \

Values to be replaced
	API-KEY: the Google Geolocation API Key obtained from GCP.

Google Geocoding API Key (optional)
Activate the Geocoding API for your project in GCP and
create an API key to be
used with Google Geocoding.
After that, create the secret containing the API key with:
$ kubectl create secret generic -n edgehog edgehog-google-geocoding-credentials \
 --from-literal="api-key=<API-KEY>"

Values to be replaced
	API-KEY: the Google Geocoding API Key obtained from GCP.

ipbase.com API Key (optional)
Register an account at ipbase.com to obtain an API key.
After that, create the secret containing the API key with:
$ kubectl create secret generic -n edgehog edgehog-ipbase-credentials \
 --from-literal="api-key=<API-KEY>"

Values to be replaced
	API-KEY: the API Key obtained from ipbase.com.

Deployments
After secrets are deployed, the deployments can be applied to the cluster.
Backend
To deploy the backend, copy the following yaml snippet in backend-deployment.yaml, fill the
missing values (detailed below) and execute
$ kubectl apply -f backend-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: edgehog-backend
 name: edgehog-backend
 namespace: edgehog
spec:
 replicas: 1
 selector:
 matchLabels:
 app: edgehog-backend
 template:
 metadata:
 labels:
 app: edgehog-backend
 spec:
 containers:
 - env:
 - name: RELEASE_NAME
 value: edgehog
 - name: PORT
 value: "4000"
 - name: URL_HOST
 value: <BACKEND-HOST>
 - name: DATABASE_HOSTNAME
 value: <DATABASE-HOSTNAME>
 - name: DATABASE_NAME
 valueFrom:
 secretKeyRef:
 key: database
 name: edgehog-db-connection
 - name: DATABASE_USERNAME
 valueFrom:
 secretKeyRef:
 key: username
 name: edgehog-db-connection
 - name: DATABASE_PASSWORD
 valueFrom:
 secretKeyRef:
 key: password
 name: edgehog-db-connection
 - name: SECRET_KEY_BASE
 valueFrom:
 secretKeyRef:
 key: secret-key-base
 name: edgehog-secret-key-base
 - name: MAX_UPLOAD_SIZE_BYTES
 value: "<MAX-UPLOAD-SIZE-BYTES>"

 # Uncomment this env if you have installed an optional ipbase.com API Key in the secrets
 #
 #- name: IPBASE_API_KEY
 # valueFrom:
 # secretKeyRef:
 # key: api-key
 # name: edgehog-ipbase-credentials

 # Uncomment this env if you have installed an optional Google Geolocation API Key in the
 # secrets
 #
 #- name: GOOGLE_GEOLOCATION_API_KEY
 # valueFrom:
 # secretKeyRef:
 # key: api-key
 # name: edgehog-google-geolocation-credentials

 # Uncomment these envs if you have installed an optional Google Geocoding API Key in
 # the secrets
 #- name: GOOGLE_GEOCODING_API_KEY
 # valueFrom:
 # secretKeyRef:
 # key: api-key
 # name: edgehog-google-geocoding-credentials

 - name: S3_GCP_CREDENTIALS
 valueFrom:
 secretKeyRef:
 key: gcp-credentials
 name: edgehog-s3-credentials

 # If you're using another S3 provider which is not Google Cloud, uncomment these envs and
 # delete the previous env
 #
 #- name: S3_ACCESS_KEY_ID
 # valueFrom:
 # secretKeyRef:
 # key: access-key-id
 # name: edgehog-s3-credentials
 #- name: S3_SECRET_ACCESS_KEY
 # valueFrom:
 # secretKeyRef:
 # key: secret-access-key
 # name: edgehog-s3-credentials

 - name: S3_SCHEME
 value: <S3-SCHEME>
 - name: S3_HOST
 value: <S3-HOST>
 - name: S3_PORT
 value: "<S3-PORT>"
 - name: S3_BUCKET
 value: <S3-BUCKET>
 - name: S3_ASSET_HOST
 value: <S3-ASSET-HOST>
 - name: S3_REGION
 value: <S3-REGION>
 image: edgehogdevicemanager/edgehog-backend:snapshot
 imagePullPolicy: Always
 name: edgehog-backend
 ports:
 - containerPort: 4000
 name: http
 protocol: TCP
Values to be replaced
	BACKEND-HOST: the host of the Edgehog backend (see the Creating DNS
entries section).
	DATABASE-HOSTNAME: the hostname of the PostgreSQL database.
	MAX-UPLOAD-SIZE-BYTES: the maximum dimension for uploads, particularly relevant for OTA updates.
If omitted, it defaults to 4 Gigabytes.
	S3-SCHEME: the scheme (http or https) for the S3 storage.
	S3-HOST: the host for the S3 storage.
	S3-PORT: the port for the S3 storage. This has to be put in double quotes to force it to be
interpreted as a string.
	S3-BUCKET: the bucket name for the S3 storage.
	S3-ASSET-HOST: the asset host for the S3 storage, e.g. storage.googleapis.com/<S3-BUCKET> for
GCP or <S3-BUCKET>.s3.amazonaws.com for AWS.
	S3-REGION: the region where the S3 storage resides.

The optional env variable in the yaml also have to be uncommented where relevant (see comments
above the commented blocks for more information).
Frontend
To deploy the frontend, copy the following yaml snippet in frontend-deployment.yaml, fill the
missing values (detailed below) and execute
$ kubectl apply -f frontend-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: edgehog-frontend
 name: edgehog-frontend
 namespace: edgehog
spec:
 replicas: 1
 selector:
 matchLabels:
 app: edgehog-frontend
 template:
 metadata:
 labels:
 app: edgehog-frontend
 spec:
 containers:
 - env:
 - name: BACKEND_URL
 value: <BACKEND-HOST>
 image: edgehogdevicemanager/edgehog-frontend:snapshot
 imagePullPolicy: Always
 name: edgehog-frontend
 ports:
 - containerPort: 80
 name: httpout
 protocol: TCP
Values to be replaced
	BACKEND-URL: the API base URL of the Edgehog backend (see the Creating DNS
entries section). This should be, e.g., https://<BACKEND-HOST>.

Services
Backend
To deploy the backend service, copy the following yaml snippet in backend-service.yaml and
execute
$ kubectl apply -f backend-service.yaml

apiVersion: v1
kind: Service
metadata:
 labels:
 app: edgehog-backend
 name: edgehog-backend
 namespace: edgehog
spec:
 ports:
 - port: 4000
 protocol: TCP
 targetPort: 4000
 selector:
 app: edgehog-backend
Frontend
To deploy the frontend service, copy the following yaml snippet in frontend-service.yaml and
execute
$ kubectl apply -f frontend-service.yaml

apiVersion: v1
kind: Service
metadata:
 labels:
 app: edgehog-frontend
 name: edgehog-frontend
 namespace: edgehog
spec:
 ports:
 - port: 80
 protocol: TCP
 targetPort: 80
 selector:
 app: edgehog-frontend
Exposing Edgehog to the Internet
SSL Certificates
This is an example certificates configuration for Edgehog. This is provided as a starting point and
it uses certmanager to obtain LetsEncrypt SSL certificates. All advanced topics (advanced
certificate management, self-provided certificates) are not discussed here and are outside the scope
of this guide.
First of all, create a ClusterIssuer by copying the following yaml snippet in
cluster-issuer.yaml and executing
$ kubectl apply -f cluster-issuer.yaml

apiVersion: cert-manager.io/v1
kind: ClusterIssuer
metadata:
 name: letsencrypt
spec:
 acme:
 server: https://acme-v02.api.letsencrypt.org/directory
 email: <EMAIL-ADDRESS>
 privateKeySecretRef:
 name: letsencrypt
 solvers:
 - http01:
 ingress:
 class: nginx
Values to be replaced
	EMAIL-ADDRESS: a valid email address that will be used for the ACME account for LetsEncrypt.

After that, create a certificate for your frontend and backend hosts, copying the following yaml
snippet in certificate.yaml and executing
$ kubectl apply -f certificate.yaml

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
 name: tls-secret
 namespace: edgehog
spec:
 secretName: tls-secret
 dnsNames:
 - <FRONTEND-HOST>
 - <BACKEND-HOST>
 issuerRef:
 group: cert-manager.io
 kind: ClusterIssuer
 name: letsencrypt
Values to be replaced
	FRONTEND-HOST: the frontend host.
	BACKEND-HOST: the backend host.

Note that this step must be performed after DNS for the frontend and backend hosts are correctly
propagated (see Creating DNS Entries).
Ingress
This is an example Ingress configuration for Edgehog. This is provided as a starting point and it
uses the NGINX Ingress Controller. All advanced topics (e.g. certificate management) are not discussed here
and are outside the scope of this guide.
Copy this yaml snippet to ingress.yaml and execute
$ kubectl apply -f ingress.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 annotations:
 cert-manager.io/cluster-issuer: letsencrypt
 kubernetes.io/ingress.class: nginx
 nginx.ingress.kubernetes.io/proxy-body-size: <MAX-UPLOAD-SIZE>
 name: edgehog-ingress
 namespace: edgehog
spec:
 rules:
 - host: <FRONTEND-HOST>
 http:
 paths:
 - backend:
 service:
 name: edgehog-frontend
 port:
 number: 80
 path: /
 pathType: Prefix
 - host: <BACKEND-HOST>
 http:
 paths:
 - backend:
 service:
 name: edgehog-backend
 port:
 number: 4000
 path: /
 pathType: Prefix
 tls:
 - hosts:
 - <FRONTEND-HOST>
 - <BACKEND-HOST>
 secretName: tls-secret
Values to be replaced
	FRONTEND-HOST: the frontend host.
	BACKEND-HOST: the backend host.
	MAX-UPLOAD-SIZE: the maximum upload size that you defined in the Edgehog backend
deployment.
Note that NGINX accepts also size suffixes, so you can put, e.g., 4G for 4 gigabytes. Also note
that, differently from the value in the Deployment, this is required because NGINX default is 1
megabyte.

Edgehog Initialization
These are some manual operation that have to be performed to initialize the Edgehog instance. In the
future these operation will be automated and/or will be performed using a dedicated API.
Creating a keypair
A keypair is needed to emit and validate tokens to access your tenant. You can generate an EC
keypair with the following OpenSSL commands
$ openssl ecparam -name prime256v1 -genkey -noout > private_key.pem
$ openssl ec -in private_key.pem -pubout > public_key.pem

After those commands are executed, you will have two files: private_key.pem and public_key.pem.
The content of public_key.pem will be needed in the next steps, while private_key.pem will be
used to emit Edgehog tokens. Make sure to store the private key somewhere safe.
Connecting to iex
Connect to the iex interactive shell of the Edgehog backend using
$ kubectl exec -it deploy/edgehog-backend -n edgehog -- /app/bin/edgehog remote

All the following commands have to be executed inside that shell, in a single session (since some
commands will reuse the result of previous commands)
Creating the tenant
The following commands will create a database entry representing the tenant, with its associated
Astarte cluster and Realm.
iex> alias Edgehog.Provisioning
iex> tenant_name = "<TENANT-NAME>"
iex> tenant_slug = "<TENANT-SLUG>"
iex> tenant_public_key = """
<TENANT-PUBLIC-KEY>
"""
iex> base_api_url = "<ASTARTE-BASE-API-URL>"
iex> realm_name = "<ASTARTE-REALM-NAME>"
iex> realm_private_key = """
<ASTARTE-REALM-PRIVATE-KEY>
"""
iex> {:ok, tenant} = Provisioning.provision_tenant(
 %{
 name: tenant_name,
 slug: tenant_slug,
 public_key: tenant_public_key,
 astarte_config: %{
 base_api_url: base_api_url,
 realm_name: realm_name,
 realm_private_key: realm_private_key
 }
 })
Values to be replaced
	TENANT-NAME: the name of the new tenant.
	TENANT-SLUG: the slug of the tenant, must contain only lowercase letters and hyphens.
	TENANT-PUBLIC-KEY: the content of public_key.pem created in the previous
step. Open a multiline string with """, press Enter, paste the content of
the file in the iex shell and then close the multiline string with """ on a new line.
	ASTARTE-BASE-API-URL: the base API url of the Astarte instance (e.g.
https://api.astarte.example.com).
	ASTARTE-REALM-NAME: the name of the Astarte realm you're using.
	ASTARTE-REALM-PRIVATE-KEY: the content of you realm's private key. Open a multiline string with
""", press Enter, paste the content of the file in the iex shell and then close the multiline
string with """ on a new line.

Accessing Edgehog
At this point your Edgehog instance is ready to use. The last step is generating a token to access
your Edgehog frontend instance. You can do so using the gen-edgehog-jwt tool contained in the
tools directory of the Edgehog
repo.
$ pip3 install pyjwt
$./gen-edgehog-jwt -k <PATH-TO-TENANT-PRIVATE-KEY>

Values to be replaced
	PATH-TO-TENANT-PRIVATE-KEY: path to the private_key.pem file created in the previous
step.

Note that the token expires after 24 hours by default. If you want to have a token with a different
expiry time, you can pass -e <EXPIRY-SECONDS> to the gen-edgehog-jwt command.
After that, you can open your frontend URL in your browser and insert your tenant slug and token to
log into your Edgehog instance, and use to the user guide to discover all Edgehog
features.

 Interacting with Edgehog - Edgehog v0.7.1

Interacting with Edgehog

Edgehog's interaction is logically divided amongst two main entities: devices and users.
Devices are the bottom end, and represent the IoT fleet. They can access
Astarte and exchange data via Astarte Interfaces
which, in turn, also define on a very granular level which kind of data they can exchange. Data
exposed by devices are relayed to Edgehog via Astarte Triggers.
Users are actual users, applications or anything else which needs to interact with Edgehog.
User-side Tools
To interact with Edgehog, several options are available:
	Edgehog's dashboard interface: it provides a built-in UI that can be used for managing Devices,
Hardware Types, and System Models. It is meant to be a graphical, user-friendly tool to manage
those entities.
	Edgehog's GraphQL APIs: they are meant as a machine-friendly way to perform
operations on Edgehog's entities and for integrating 3rd party applications.

Publishing Device data
Devices can publish any kind of data to Astarte via Astarte Interfaces. However, some standard
interfaces are already supported by Edgehog in order to provide useful functionalities, such as
device geolocation.
Hence, data that devices send via
Edgehog's Astarte Interfaces
are automatically understood, collected and reported by Edgehog.
Publishing info about the System
Each Device is supposed to notify Astarte, e.g. on each connection, about its System.
To do so, the Device can use the io.edgehog.devicemanager.SystemInfo
Astarte Interface to specify:
	the Serial Number: a code that uniquely identifies the System
	the Part Number: a code that uniquely identifies the System Model

When exposing the Part Number, Edgehog can associate the Device to the correct System Model by
matching the Device's Part Number with the ones of the registered System Model.
Publishing info about the hardware
Each Device can notify Astarte about the general capabilities of the Device. These info are
hardware-related and are usually not intended to change over time.
A Device can expose this set of data via the
io.edgehog.devicemanager.HardwareInfo Astarte Interface.
Publishing info about the Device status
To expose info about its current status or measured data, some additional Astarte Interfaces are
already defined for Edgehog. Their adoption is optional but recommended.
	io.edgehog.devicemanager.SystemStatus: reports the current OS status.
	io.edgehog.devicemanager.StorageUsage: reports the capacity and usage
of the storage units.
	io.edgehog.devicemanager.BatteryStatus: reports the current status of
the battery slots.
	io.edgehog.devicemanager.Geolocation: reports the current position
computed by the GPS sensors of the device.
	io.edgehog.devicemanager.WiFiScanResults: reports the list of nearby
Access Points that the Device found while scanning for WiFi signals.

 Astarte Interfaces - Edgehog v0.7.1

Astarte Interfaces

io.edgehog.devicemanager.BaseImage v0.1
About
This interface is of type properties and is owned by the device, meaning that it is the device which initiates the data flow.
Thanks to this type of interface, the device can set a persistent, stateful, synchronized state with no concept of history or timestamping.
Mappings
The interface has the following mappings:
	/fingerprint with string type. OS bundle release identification code
	/name with string type. Name of the bundle
	/version with string type. Version of the bundle
	/buildId with string type. Human readable build identifier. Examples are [date][time] or [date]-[time]-[git-commit]

/fingerprint
OS bundle release identification code
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The value of the property cannot be unset.
/name
Name of the bundle
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The value of the property cannot be unset.
/version
Version of the bundle
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The value of the property cannot be unset.
/buildId
Human readable build identifier. Examples are [date][time] or [date]-[time]-[git-commit]
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The value of the property cannot be unset.
io.edgehog.devicemanager.BatteryStatus v0.1
About
This interface is of type datastream and is owned by the device, meaning that it is the device which initiates the data flow.
Thanks to this type of interface, the device can send a mutable, ordered stream of data, with no concept of persistent state or synchronization.
Data gets sent with an object aggregation.
Astarte expects the owner to send all of the interface's mappings at the same time, packed in a single message.
Mappings
The interface has the following mappings:
	/%{battery_slot}/levelPercentage with double type. Battery level estimated percentage [0.0%-100.0%]
	/%{battery_slot}/levelAbsoluteError with double type. Battery level measurement absolute error [0.0-100.0]
	/%{battery_slot}/status with string type. Battery status string, any of: Charging, Discharging, Idle, EitherIdleOrCharging, Failure, Removed, Unknown

/%{battery_slot}/levelPercentage
Battery level estimated percentage [0.0%-100.0%]
This endpoint accepts values of type double: a double-precision floating-point number as specified by binary64, by the IEEE 754 standard.
The endpoint is parametric and battery_slot can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/%{battery_slot}/levelAbsoluteError
Battery level measurement absolute error [0.0-100.0]
This endpoint accepts values of type double: a double-precision floating-point number as specified by binary64, by the IEEE 754 standard.
The endpoint is parametric and battery_slot can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/%{battery_slot}/status
Battery status string, any of: Charging, Discharging, Idle, EitherIdleOrCharging, Failure, Removed, Unknown
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint is parametric and battery_slot can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
io.edgehog.devicemanager.CellularConnectionProperties v0.1
About
This interface is of type properties and is owned by the device, meaning that it is the device which initiates the data flow.
Thanks to this type of interface, the device can set a persistent, stateful, synchronized state with no concept of history or timestamping.
Mappings
The interface has the following mappings:
	/%{id}/apn with string type. Operator apn address.
	/%{id}/imei with string type. The modem IMEI code of the device.
	/%{id}/imsi with string type. The SIM IMSI code of the device.

/%{id}/apn
Operator apn address.
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint is parametric and id can be replaced with any valid string to send data on specialized paths.
The value of the property can be unset.
/%{id}/imei
The modem IMEI code of the device.
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint is parametric and id can be replaced with any valid string to send data on specialized paths.
The value of the property can be unset.
/%{id}/imsi
The SIM IMSI code of the device.
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint is parametric and id can be replaced with any valid string to send data on specialized paths.
The value of the property can be unset.
io.edgehog.devicemanager.CellularConnectionStatus v0.1
About
This interface is of type datastream and is owned by the device, meaning that it is the device which initiates the data flow.
Thanks to this type of interface, the device can send a mutable, ordered stream of data, with no concept of persistent state or synchronization.
Data gets sent with an object aggregation.
Astarte expects the owner to send all of the interface's mappings at the same time, packed in a single message.
Mappings
The interface has the following mappings:
	/%{id}/carrier with string type. Connectivity carrier operator name.
	/%{id}/cellId with longinteger type. The Cell ID in hexadecimal format, either 16 bit for 2G or 28 bit for 3G or 4G.
	/%{id}/mobileCountryCode with integer type. The mobile country code (MCC) for the device's home network. Valid range: 0–999.
	/%{id}/mobileNetworkCode with integer type. The Mobile Network Code for the device's home network. This is the MNC for GSM, WCDMA, LTE and NR. CDMA uses the System ID (SID). Valid range for MNC: 0–999. Valid range for SID: 0–32767.
	/%{id}/localAreaCode with integer type. Two byte location area code in hexadecimal format.
	/%{id}/registrationStatus with string type. GSM/LTE registration status. Possible values: [NotRegistered, Registered, SearchingOperator, RegistrationDenied, Unknown, RegisteredRoaming]
	/%{id}/rssi with double type. Signal strenght of the device in dBm.
	/%{id}/technology with string type. Access Technology. Possible values [GSM, GSMCompact, UTRAN, GSMwEGPRS, UTRANwHSDPA, UTRANwHSUPA, UTRANwHSDPAandHSUPA, EUTRAN]

/%{id}/carrier
Connectivity carrier operator name.
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint is parametric and id can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/%{id}/cellId
The Cell ID in hexadecimal format, either 16 bit for 2G or 28 bit for 3G or 4G.
This endpoint accepts values of type longinteger: a signed 64 bit integer (please note that longinteger is represented as a string by default in JSON-based APIs.).
The endpoint is parametric and id can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/%{id}/mobileCountryCode
The mobile country code (MCC) for the device's home network. Valid range: 0–999.
This endpoint accepts values of type integer: a signed 32 bit integer.
The endpoint is parametric and id can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/%{id}/mobileNetworkCode
The Mobile Network Code for the device's home network. This is the MNC for GSM, WCDMA, LTE and NR. CDMA uses the System ID (SID). Valid range for MNC: 0–999. Valid range for SID: 0–32767.
This endpoint accepts values of type integer: a signed 32 bit integer.
The endpoint is parametric and id can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/%{id}/localAreaCode
Two byte location area code in hexadecimal format.
This endpoint accepts values of type integer: a signed 32 bit integer.
The endpoint is parametric and id can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/%{id}/registrationStatus
GSM/LTE registration status. Possible values: [NotRegistered, Registered, SearchingOperator, RegistrationDenied, Unknown, RegisteredRoaming]
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint is parametric and id can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/%{id}/rssi
Signal strenght of the device in dBm.
This endpoint accepts values of type double: a double-precision floating-point number as specified by binary64, by the IEEE 754 standard.
The endpoint is parametric and id can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/%{id}/technology
Access Technology. Possible values [GSM, GSMCompact, UTRAN, GSMwEGPRS, UTRANwHSDPA, UTRANwHSUPA, UTRANwHSDPAandHSUPA, EUTRAN]
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint is parametric and id can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
io.edgehog.devicemanager.Commands v0.1
About
This interface is of type datastream and is owned by the server, meaning that it is the server which initiates the data flow.
Thanks to this type of interface, the server can send a mutable, ordered stream of data, with no concept of persistent state or synchronization.
Data gets sent with an individual aggregation.
Each mapping is treated as an independent value and is managed individually.
Mappings
The interface has the following mappings:
	/request with string type. Command request. Possible values ['Reboot']

/request
Command request. Possible values ['Reboot']
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when it has been received exactly once by the recipient.
Data is discarded if the transport is temporarily uncapable of delivering it.
io.edgehog.devicemanager.ForwarderSessionRequest v0.1
Configuration to open a session with the Edgehog Forwarder from a device to a certain host.
About
This interface is of type datastream and is owned by the server, meaning that it is the server which initiates the data flow.
Thanks to this type of interface, the server can send a mutable, ordered stream of data, with no concept of persistent state or synchronization.
Data gets sent with an object aggregation.
Astarte expects the owner to send all of the interface's mappings at the same time, packed in a single message.
Mappings
The interface has the following mappings:
	/request/session_token with string type. The session token thanks to which the device can authenticates itself through Edgehog.
	/request/port with integer type. The host port the device must connect to.
	/request/host with string type. The IP address or host name the device must connect to.
	/request/secure with boolean type. Indicates whether the connection should use TLS, i.e. 'ws' or 'wss' scheme.

/request/session_token
The session token thanks to which the device can authenticates itself through Edgehog.
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 31556952 seconds before it is erased from the database.
/request/port
The host port the device must connect to.
This endpoint accepts values of type integer: a signed 32 bit integer.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 31556952 seconds before it is erased from the database.
/request/host
The IP address or host name the device must connect to.
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 31556952 seconds before it is erased from the database.
/request/secure
Indicates whether the connection should use TLS, i.e. 'ws' or 'wss' scheme.
This endpoint accepts values of type boolean: either true or false, adhering to JSON boolean type.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 31556952 seconds before it is erased from the database.
io.edgehog.devicemanager.ForwarderSessionState v0.1
Information provided by the device about the status of a forwarder session.
About
This interface is of type properties and is owned by the device, meaning that it is the device which initiates the data flow.
Thanks to this type of interface, the device can set a persistent, stateful, synchronized state with no concept of history or timestamping.
Mappings
The interface has the following mappings:
	/%{session_token}/status with string type. Indicates if the device is connecting, or connected to a forwarder session.

/%{session_token}/status
Indicates if the device is connecting, or connected to a forwarder session.
An enum with the following possible values: Connecting | Connected.
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint is parametric and session_token can be replaced with any valid string to send data on specialized paths.
The value of the property can be unset.
io.edgehog.devicemanager.Geolocation v0.1
Generic Geolocation sampled data.
Geolocation allows geolocation sensors to stream location data, such as GPS data. Values availability depends on what sensors are present on devices and what measurement systems are in use. The id represents a unique identifier for an individual sensor.
About
This interface is of type datastream and is owned by the device, meaning that it is the device which initiates the data flow.
Thanks to this type of interface, the device can send a mutable, ordered stream of data, with no concept of persistent state or synchronization.
Data gets sent with an object aggregation.
Astarte expects the owner to send all of the interface's mappings at the same time, packed in a single message.
Mappings
The interface has the following mappings:
	/%{id}/latitude with double type. Sampled latitude value.
	/%{id}/longitude with double type. Sampled longitude value.
	/%{id}/altitude with double type. Sampled altitude value.
	/%{id}/accuracy with double type. Sampled accuracy of the latitude and longitude properties.
	/%{id}/altitudeAccuracy with double type. Sampled accuracy of the altitude property.
	/%{id}/heading with double type. Sampled value representing the direction towards which the device is facing.
	/%{id}/speed with double type. Sampled value representing the velocity of the device.

/%{id}/latitude
Sampled latitude value.
This endpoint accepts values of type double: a double-precision floating-point number as specified by binary64, by the IEEE 754 standard.
The endpoint is parametric and id can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/%{id}/longitude
Sampled longitude value.
This endpoint accepts values of type double: a double-precision floating-point number as specified by binary64, by the IEEE 754 standard.
The endpoint is parametric and id can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/%{id}/altitude
Sampled altitude value.
This endpoint accepts values of type double: a double-precision floating-point number as specified by binary64, by the IEEE 754 standard.
The endpoint is parametric and id can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/%{id}/accuracy
Sampled accuracy of the latitude and longitude properties.
This endpoint accepts values of type double: a double-precision floating-point number as specified by binary64, by the IEEE 754 standard.
The endpoint is parametric and id can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/%{id}/altitudeAccuracy
Sampled accuracy of the altitude property.
This endpoint accepts values of type double: a double-precision floating-point number as specified by binary64, by the IEEE 754 standard.
The endpoint is parametric and id can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/%{id}/heading
Sampled value representing the direction towards which the device is facing.
This endpoint accepts values of type double: a double-precision floating-point number as specified by binary64, by the IEEE 754 standard.
The endpoint is parametric and id can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/%{id}/speed
Sampled value representing the velocity of the device.
This endpoint accepts values of type double: a double-precision floating-point number as specified by binary64, by the IEEE 754 standard.
The endpoint is parametric and id can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
io.edgehog.devicemanager.HardwareInfo v0.1
General hardware capabilities
About
This interface is of type properties and is owned by the device, meaning that it is the device which initiates the data flow.
Thanks to this type of interface, the device can set a persistent, stateful, synchronized state with no concept of history or timestamping.
Mappings
The interface has the following mappings:
	/cpu/architecture with string type. CPU Architecture
	/cpu/model with string type. CPU Model Code
	/cpu/modelName with string type. CPU Model Display Name
	/cpu/vendor with string type. CPU Vendor
	/mem/totalBytes with longinteger type. Total RAM quantity (Bytes)

/cpu/architecture
CPU Architecture
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The value of the property cannot be unset.
/cpu/model
CPU Model Code
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The value of the property cannot be unset.
/cpu/modelName
CPU Model Display Name
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The value of the property cannot be unset.
/cpu/vendor
CPU Vendor
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The value of the property cannot be unset.
/mem/totalBytes
Total RAM quantity (Bytes)
This endpoint accepts values of type longinteger: a signed 64 bit integer (please note that longinteger is represented as a string by default in JSON-based APIs.).
The value of the property cannot be unset.
io.edgehog.devicemanager.LedBehavior v0.1
About
This interface is of type datastream and is owned by the server, meaning that it is the server which initiates the data flow.
Thanks to this type of interface, the server can send a mutable, ordered stream of data, with no concept of persistent state or synchronization.
Data gets sent with an individual aggregation.
Each mapping is treated as an independent value and is managed individually.
Mappings
The interface has the following mappings:
	/%{led_id}/behavior with string type. Enum describing the behavior of the given led. Possible values: [Blink60Seconds | DoubleBlink60Seconds | SlowBlink60Seconds]

/%{led_id}/behavior
Enum describing the behavior of the given led. Possible values: [Blink60Seconds | DoubleBlink60Seconds | SlowBlink60Seconds]
Blink60Seconds: Blinking
DoubleBlink60Seconds: Double blinking
SlowBlink60Seconds: Slow blinking
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint is parametric and led_id can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Data is considered delivered when it has been received exactly once by the recipient.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
io.edgehog.devicemanager.NetworkInterfaceProperties v0.1
About
This interface is of type properties and is owned by the device, meaning that it is the device which initiates the data flow.
Thanks to this type of interface, the device can set a persistent, stateful, synchronized state with no concept of history or timestamping.
Mappings
The interface has the following mappings:
	/%{iface_name}/macAddress with string type. Normalized physical address. Example value is "00:aa:bb:cc:dd:ee" (always lower case)
	/%{iface_name}/technologyType with string type. Connection technology. Possible values: [Ethernet, Bluetooth, Cellular, WiFi]

/%{iface_name}/macAddress
Normalized physical address. Example value is "00:aa:bb:cc:dd:ee" (always lower case)
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint is parametric and iface_name can be replaced with any valid string to send data on specialized paths.
The value of the property can be unset.
/%{iface_name}/technologyType
Connection technology. Possible values: [Ethernet, Bluetooth, Cellular, WiFi]
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint is parametric and iface_name can be replaced with any valid string to send data on specialized paths.
The value of the property can be unset.
io.edgehog.devicemanager.OSInfo v0.1
About
This interface is of type properties and is owned by the device, meaning that it is the device which initiates the data flow.
Thanks to this type of interface, the device can set a persistent, stateful, synchronized state with no concept of history or timestamping.
Mappings
The interface has the following mappings:
	/osName with string type. Name of the Operating System
	/osVersion with string type. Version of the Operating System

/osName
Name of the Operating System
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The value of the property cannot be unset.
/osVersion
Version of the Operating System
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The value of the property cannot be unset.
io.edgehog.devicemanager.OTAEvent v0.1
OTA Events sampled data.
Allows to stream OTA Events data, including OTA Update status, its progress, code and internal message.
About
This interface is of type datastream and is owned by the device, meaning that it is the device which initiates the data flow.
Thanks to this type of interface, the device can send a mutable, ordered stream of data, with no concept of persistent state or synchronization.
Data gets sent with an object aggregation.
Astarte expects the owner to send all of the interface's mappings at the same time, packed in a single message.
Mappings
The interface has the following mappings:
	/event/requestUUID with string type. OTA Request identifier.
	/event/status with string type. OTA Update status.
	/event/statusProgress with integer type. Current OTA Update status progress percentage [0%-100%].
	/event/statusCode with string type. Status code expands OTA Update status with additional information.
	/event/message with string type. Contains internal message for status code or empty string otherwise.

/event/requestUUID
OTA Request identifier.
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when it has been received exactly once by the recipient.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 31556952 seconds before it is erased from the database.
/event/status
OTA Update status.
Value is one of the following strings:
	Acknowledged: the device received an OTA Request.
	Downloading: an update is in the process of downloading.
	Deploying: an update is in the process of deploying.
	Deployed: an update deployed on the device.
	Rebooting: the device is in the process of rebooting.
	Success: an update succeeded. This is a final status of OTA Update.
	Error: an error happened during the update. Also this status can be used to notify about handled errors.
	Failure: an update failed. This is a final status of OTA Update.

This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when it has been received exactly once by the recipient.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 31556952 seconds before it is erased from the database.
/event/statusProgress
Current OTA Update status progress percentage [0%-100%].
Every OTA Update status has own progress that starts from 0 and ends at 100, for example (pairs of "status, progress"): "Downloading, 0", "Downloading, 50", "Downloading, 100", "Deploying, 10", etc.
This endpoint accepts values of type integer: a signed 32 bit integer.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when it has been received exactly once by the recipient.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 31556952 seconds before it is erased from the database.
/event/statusCode
Status code expands OTA Update status with additional information.
Some common status codes are:
	InvalidRequest: an update request contains incorrect data.
	UpdateAlreadyInProgress: another update is currently in progress.
	NetworkError: a network error happened during the update.
	IOError: a filesystem error happened during the update.
	InternalError: an internal error happened during the update.
	InvalidBaseImage: an update failed to apply due to an invalid base image.
	SystemRollback: a system rollback has occurred.
	Canceled: an update was canceled.

This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when it has been received exactly once by the recipient.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 31556952 seconds before it is erased from the database.
/event/message
Contains internal message for status code or empty string otherwise.
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when it has been received exactly once by the recipient.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 31556952 seconds before it is erased from the database.
io.edgehog.devicemanager.OTARequest v1.0
About
This interface is of type datastream and is owned by the server, meaning that it is the server which initiates the data flow.
Thanks to this type of interface, the server can send a mutable, ordered stream of data, with no concept of persistent state or synchronization.
Data gets sent with an object aggregation.
Astarte expects the owner to send all of the interface's mappings at the same time, packed in a single message.
Mappings
The interface has the following mappings:
	/request/operation with string type. OTA Request operation
	/request/url with string type. File URL
	/request/uuid with string type. Request identifier

/request/operation
OTA Request operation
Value is one of the following strings:
	Update: push an OTA update operation.
	Cancel: cancel an OTA update if it can still be cancelled.

This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 31556952 seconds before it is erased from the database.
/request/url
File URL
If the operation is Update, this will contain the URL that can be used to download the Update.
 If the operation is Cancel, this will be an empty string.
 Note that the URL will be valid only until the OTA update is active (i.e. it didn't reach a Failure or Success state), after that it's possible that the URL can become invalid.
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 31556952 seconds before it is erased from the database.
/request/uuid
Request identifier
A UUID that uniquely identifies the OTA request. It must be stored when receiving an Update operation so that it can be matched against in case a Cancel operation is received.
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 31556952 seconds before it is erased from the database.
io.edgehog.devicemanager.RuntimeInfo v0.1
About
This interface is of type properties and is owned by the device, meaning that it is the device which initiates the data flow.
Thanks to this type of interface, the device can set a persistent, stateful, synchronized state with no concept of history or timestamping.
Mappings
The interface has the following mappings:
	/name with string type. Name of the Edgehog runtime. Example value: edgehog-esp32-device
	/url with string type. URL that uniquely identifies the Edgehog Edgehog runtime implementation. Example value: https://github.com/edgehog-device-manager/edgehog-esp32-device.
	/version with string type. Version of the Edgehog runtime. Example value: 0.5
	/environment with string type. Environment of the Edgehog runtime. Example value: esp-idf VERSION, Rust 1.58 or Java 8

/name
Name of the Edgehog runtime. Example value: edgehog-esp32-device
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The value of the property cannot be unset.
/url
URL that uniquely identifies the Edgehog Edgehog runtime implementation. Example value: https://github.com/edgehog-device-manager/edgehog-esp32-device.
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The value of the property cannot be unset.
/version
Version of the Edgehog runtime. Example value: 0.5
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The value of the property cannot be unset.
/environment
Environment of the Edgehog runtime. Example value: esp-idf VERSION, Rust 1.58 or Java 8
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The value of the property cannot be unset.
io.edgehog.devicemanager.StorageUsage v0.1
About
This interface is of type datastream and is owned by the device, meaning that it is the device which initiates the data flow.
Thanks to this type of interface, the device can send a mutable, ordered stream of data, with no concept of persistent state or synchronization.
Data gets sent with an object aggregation.
Astarte expects the owner to send all of the interface's mappings at the same time, packed in a single message.
Mappings
The interface has the following mappings:
	/%{label}/totalBytes with longinteger type. Total storage size in bytes
	/%{label}/freeBytes with longinteger type. Available storage bytes

/%{label}/totalBytes
Total storage size in bytes
This endpoint accepts values of type longinteger: a signed 64 bit integer (please note that longinteger is represented as a string by default in JSON-based APIs.).
The endpoint is parametric and label can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/%{label}/freeBytes
Available storage bytes
This endpoint accepts values of type longinteger: a signed 64 bit integer (please note that longinteger is represented as a string by default in JSON-based APIs.).
The endpoint is parametric and label can be replaced with any valid string to send data on specialized paths.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
io.edgehog.devicemanager.SystemInfo v0.1
Information about the system
About
This interface is of type properties and is owned by the device, meaning that it is the device which initiates the data flow.
Thanks to this type of interface, the device can set a persistent, stateful, synchronized state with no concept of history or timestamping.
Mappings
The interface has the following mappings:
	/serialNumber with string type. The serial number of the system
	/partNumber with string type. The part number of the system

/serialNumber
The serial number of the system
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The value of the property cannot be unset.
/partNumber
The part number of the system
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The value of the property cannot be unset.
io.edgehog.devicemanager.SystemStatus v0.1
About
This interface is of type datastream and is owned by the device, meaning that it is the device which initiates the data flow.
Thanks to this type of interface, the device can send a mutable, ordered stream of data, with no concept of persistent state or synchronization.
Data gets sent with an object aggregation.
Astarte expects the owner to send all of the interface's mappings at the same time, packed in a single message.
Mappings
The interface has the following mappings:
	/systemStatus/availMemoryBytes with longinteger type. Available memory (Bytes)
	/systemStatus/bootId with string type. UUID representing the Boot Id
	/systemStatus/taskCount with integer type. Number of running tasks or processes
	/systemStatus/uptimeMillis with longinteger type. Get time in milliseconds since boot

/systemStatus/availMemoryBytes
Available memory (Bytes)
This endpoint accepts values of type longinteger: a signed 64 bit integer (please note that longinteger is represented as a string by default in JSON-based APIs.).
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/systemStatus/bootId
UUID representing the Boot Id
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/systemStatus/taskCount
Number of running tasks or processes
This endpoint accepts values of type integer: a signed 32 bit integer.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/systemStatus/uptimeMillis
Get time in milliseconds since boot
This endpoint accepts values of type longinteger: a signed 64 bit integer (please note that longinteger is represented as a string by default in JSON-based APIs.).
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
io.edgehog.devicemanager.WiFiScanResults v0.2
About
This interface is of type datastream and is owned by the device, meaning that it is the device which initiates the data flow.
Thanks to this type of interface, the device can send a mutable, ordered stream of data, with no concept of persistent state or synchronization.
Data gets sent with an object aggregation.
Astarte expects the owner to send all of the interface's mappings at the same time, packed in a single message.
Mappings
The interface has the following mappings:
	/ap/channel with integer type. The channel over which the client is communicating with the access point.
	/ap/connected with boolean type. Identifies if the device is connected to this Access Point
	/ap/essid with string type. Extended Service Set Identification of the current AP, empty string if the AP is hidden.
	/ap/macAddress with string type. Lower case mac address string formatted like de:ad:be:ff:11:22.
	/ap/rssi with integer type. The current signal strength measured in dBm.

/ap/channel
The channel over which the client is communicating with the access point.
The channel represents one of the ranges into which the reference frequency is divided and it's identified by an integer number in the range 1 - 165, depending on the frequency itself and the region.
This endpoint accepts values of type integer: a signed 32 bit integer.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/ap/connected
Identifies if the device is connected to this Access Point
This endpoint accepts values of type boolean: either true or false, adhering to JSON boolean type.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/ap/essid
Extended Service Set Identification of the current AP, empty string if the AP is hidden.
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/ap/macAddress
Lower case mac address string formatted like de:ad:be:ff:11:22.
This endpoint accepts values of type string: an UTF-8 string, at most 65536 bytes long.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
/ap/rssi
The current signal strength measured in dBm.
This endpoint accepts values of type integer: a signed 32 bit integer.
The endpoint has a specific configuration for how data is stored, transferred and indexed.
Astarte expects a valid timestamp to be attached each time data is produced.
Data is considered delivered when the transport successfully sends the data regardless of the outcome.
Data is discarded if the transport is temporarily uncapable of delivering it.
Delivered data is kept for 5184000 seconds before it is erased from the database.
io.edgehog.devicemanager.config.Telemetry v0.1
About
This interface is of type properties and is owned by the server, meaning that it is the server which initiates the data flow.
Thanks to this type of interface, the server can set a persistent, stateful, synchronized state with no concept of history or timestamping.
Mappings
The interface has the following mappings:
	/request/%{interface_name}/enable with boolean type. Enable/Disable telemetry update. Unset returns to the previous state configured in the device.
	/request/%{interface_name}/periodSeconds with longinteger type. Set interval of period seconds between the end of the previous update and the start of the next one. Unset returns to the previous state configured in the device.

/request/%{interface_name}/enable
Enable/Disable telemetry update. Unset returns to the previous state configured in the device.
This endpoint accepts values of type boolean: either true or false, adhering to JSON boolean type.
The endpoint is parametric and interface_name can be replaced with any valid string to send data on specialized paths.
The value of the property can be unset.
/request/%{interface_name}/periodSeconds
Set interval of period seconds between the end of the previous update and the start of the next one. Unset returns to the previous state configured in the device.
This endpoint accepts values of type longinteger: a signed 64 bit integer (please note that longinteger is represented as a string by default in JSON-based APIs.).
The endpoint is parametric and interface_name can be replaced with any valid string to send data on specialized paths.
The value of the property can be unset.

OEBPS/assets/update_campaign_list.png
Update Campaigns

Search Q

Update Campaign Name Status Outcome Update Channel Base Image Collection Base Image

Beta scooter 1.0.0 @ Inprogress Beta scooter E-Scooter OS 1.0.0

OEBPS/assets/device_cellular_connection.png
Cellular Connection

modem_2
IMs| 313460000000001
modem_3
APN company.com
Carrier Carrier
Registration Status Registered
Technology GSM
RSSI -60
CelliD 170402199
Local Area Code 35632
Mobile Network Code 410

Mobile Country Code 310

OEBPS/assets/device_system_status.png
System Status
Last updated at December 9, 2021, 12:51 PM

Free Memory 90.23 KiB

Active Tasks 12

Last boot at November 22, 2021, 18:10 PM

OEBPS/assets/update_channel.png
Beta scooter

Name Beta scooter

Handle update-channel-scooter-beta

Target Groups

OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

OEBPS/assets/base_image_collection_create.png
Create Base Image Collection

Name

Handle

v

System Model Select a System Model

OEBPS/assets/system_models.png
System Models

Search Q
System Model Name Handle Hardware Type Part Numbers
Connected E-Scooter 1 connected-e-scooter-1 Strawberry Pi 5 C-E-SCOOTER-1, C-E-SCOOTER-2

Connected E-Bike 1 connected-e-bike-1 Strawberry Pi 4 C-E-BIKE-1

OEBPS/assets/base_image_collection_list.png
Base Image Collections

Search

Base Image Collection Name

Handle

System Model

reate Base Image Collection

Q

E-Bike OS
E-Scooter OS

E-Scooter OS 2

e-bike-os

e-scooter-os

e-scooter-os-2

Connected E-Bike 1

Connected E-Scooter 1

Connected E-Scooter 2

OEBPS/assets/base_image.png
Base Image

Base Image Collection E-Scooter OS
Base Image file 1.0.0.bin
Version 1.0.0
Supported starting versions

Release Display Name (en-US)

Description (en-US) first release

4

OEBPS/assets/device_battery.png
Battery

slot Status Charge Level

Main Battery Charging 803%

OEBPS/assets/logo-favicon.png

OEBPS/assets/hardware_types.png
Hardware Types

Search Q

Hardware Type Name Handle Part Numbers

Strawberry Pi 5 strawberry-pi-5 STBEPI-5-MA-2GB-REV1

OEBPS/assets/update_campaign.png
Beta scooter 1.0.0

Status @ Inprogress Max Pending Operations 2
Outcome Max Failures (%) 20 0.0%
Base Image Collection E-Scooter OS Request Timeout (seconds) 60
Base Image 1.0.0 Request Retries 0 Total
Update Channel Beta scooter Force Downgrade 5
@ Successiul @ Failed @ Inprogress @ ldle
Devices
@ Successful @ Failed @ Inprogress @ Idle
Device Completed at
e-scooter 3 August 7, 2023 at 5:12 PM

OEBPS/assets/devices.png
Devices

Search Q
Status Device Name Device ID System Model Hardware Type Last Seen
@ Connected e-bike 1 UnN5wk03SCKE3fw4l3bqzQ Connected E-Bike 1 Strawberry Pi 5 Now

@ Disconnected

XZW5QCEYRi6Px0zSkvWGPA

XZW5QCEYRi6PX0zSKVWGPA

April 25, 2021, 9:00 AM

OEBPS/assets/device_runtime.png
Runtime

Name

Version

Environment

URL

edgehog-esp32-device

0.1.0

esp-idfv4.3

https://github.com/edgehog-device-manager/edgehog-esp32-device

OEBPS/assets/update_channel_create.png
Create Update Channel

Name
Handle

Target Groups Select...

OEBPS/assets/update_campaign_create.png
Create Update Campaign

Name

Base Image Collection

Base Image

Update Channel

Max Pending Operations

Max Failures (%)

Request Timeout (seconds)

Request Retries

Select a Base Image Collection

Select a Base Image

Select an Update Channel

300

Force Downgrade

Cre;

OEBPS/assets/create_hardware_type.png
Create Hardware Type

Name Strawberry Pi 5
Handle strawberry-pi-5
Part Numbers STBEPI-5-MA-2GB-REV1

STBEPI-5-MB-8GB-REV1

STBEPI-5-MB-8GB-REV2

Add Part Number

Create

OEBPS/assets/device_hardware_info.png
Hardware Info

CPU architecture

CPU model code

CPU model name

CPU vendor

Total memory

Xtensa

ESP32

Dual-core Xtensa LX6

Espressif Systems

332 KiB

OEBPS/assets/base_image_collection.png
E-Scooter OS

Name E-Scooter OS
Handle e-scooter-os
System Model Connected E-Scooter 1

Base Images

Create Base Image

Base Image Version Release Name Supported Starting Versions
1.00

1.01

2.00 >=1.0.0

2.0.1 >=2.0.0

OEBPS/assets/base_image_list.png
E-Scooter OS

Name E-Scooter OS

Handle e-scooter-os

System Model Connected E-Scooter 1

Base Images

Base Image Version Release Name

Supported Starting Versions

Create Base Image

OEBPS/assets/device_geolocation.png
Geolocation

Last known location, updated at June 16, 2021, 4:08 PM

OEBPS/assets/device_storage.png
Storage

Storage Unit Total Space Free Space

partition0 64 MiB 20 MiB

OEBPS/assets/device_base_image.png
Base Image

